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Genes within the E3 transcription unit of human adenoviruses modulate host immune responses to infection. A comprehensive
genomics and bioinformatics analysis of the E3 transcription unit for 38 viruses within human adenovirus species D (HAdV-D)
revealed distinct and surprising patterns of homologous recombination. Homologous recombination was identified in open
reading frames for E3 CR1�, CR1�, and CR1�, similar to that previously observed with genes encoding the three major struc-
tural capsid proteins, the penton base, hexon, and fiber.

Human adenoviruses (HAdVs) infect a wide array of mucosal
surfaces, including the respiratory and gastrointestinal tracts

and the eye, and cause infections that vary in severity from mild to
life-threatening (1–3). Sixty-nine HAdV genotypes are now for-
mally recognized in GenBank; they have been classified into seven
species (A to G), with species HAdV-D containing the most mem-
bers. HAdV-D includes a substantial number of viruses identified
during the first 2 decades of the AIDS epidemic (4). HAdVs are
preferred candidate vectors for gene therapy trials because of their
broad tissue tropism and ease of manipulation (5). These viruses
are nonenveloped with an icosahedral capsid and contain a linear,
double-stranded DNA genome of 34 to 36 kb. The recent comple-
tion of whole-genome sequencing and analysis for all prototype
HAdV genomes (6) has contributed to renewed understanding of
the role of homologous recombination in the evolution of HAdVs,
particularly species D, but also other HAdV species (7–16). Genes
for the three major capsid proteins, the hexon, penton base, and
fiber, all readily recombine among viruses within HAdV-D (13,
17–25). However, the evolution of another region of HAdV-D
genomes with relative hypervariability, the E3 transcription unit,
has not been as well studied. Although E3 is labeled an early tran-
scription region, its transcripts are expressed both early and late
during viral infection (26–28). E3 gene products are not required
for viral replication in cultured cells (29), but they act to inhibit
cellular and cytokine-mediated host immune responses to in-
fected cells (30–32). Specific deletions of E3 have been shown to
affect the activity of bioengineered oncolytic HAdV in tumor
models (33), and exogenous expression of E3 proteins can pro-
long xenograft transplant survival (34). These data suggest that the
E3 transcription unit is important to viral pathogenesis.

The E3 transcription units in different HAdV species vary in
both length and number of open reading frames (ORFs) and are
areas of major sequence divergence (35, 36). The DNA sequence
of the E3 transcription unit of HAdV-C2 was the first to be deter-
mined (37, 38), followed by that of HAdV-C5 (39), and consists of
seven ORFs. From the 5= end of the E3 coding region, these are
12.5K (or gp12.5 kDa), CR1� (also known as 6.7K), 19K (or
gp19K), CR1� (11.6K), RID� (10.4K), RID� (14.9K), and 14.7K.
The RID proteins were named for their activity in receptor inter-
nalization and degradation (40–42), and CR1 proteins were

named for conserved region 1 within E3 (43). The E3 transcrip-
tion unit from HAdV-D contains eight ORFs, including an addi-
tional ORF not found in HAdV-C, CR1� (30K). HAdV-D gene
orthologs tend to vary in size relative to HAdV-C (43, 44).

With notable exceptions (25, 43–45), most of what is known
about the functions of specific E3 proteins is derived from studies
of HAdV-C. For example, HAdV-C2 E3 glycoprotein CR1� di-
rects E3 19K to the endoplasmic reticulum (46). There, it inhibits
cell lysis caused by cytotoxic T cells by binding to and retaining
major histocompatibility complex (MHC) class I proteins in the
endoplasmic reticulum (47), thereby blocking presentation of vi-
ral peptides within MHC class I at the cell surface (48–52). E3 19K
also sequesters natural killer (NK) cell ligands (53), reducing NK
cell recognition of infected cells. The HAdV-C E3 14.7K protein
inhibits cell lysis by tumor necrosis factor alpha (TNF-�) and
lymphotoxin (54–56). CR1�, RID�, and RID� cooperate to evade
TNF-�-related apoptosis through TRAIL (57–60), and the RID
complex independently mediates loss of cell surface Fas (58, 61),
blocks TNF-�-induced NF-�B activation (62–64), and down-
regulates the epidermal growth factor receptor (40, 65). HAdV-C
CR1� (66), also called the adenovirus death protein, is expressed
at greatest abundance late in infection (67) and is required for
efficient cell lysis (68) and viral spread (69) in the final phase of
viral infection. Notably, the immune evasion functions of E3 gene
products are not universal to all cell types (70), and substantial
differences may exist between orthologs from E3 regions of differ-
ent species (45).

The recent availability of high-quality whole-genome sequences
with validated annotations for all previously typed viruses within
HAdV-D (6) now permits the comparative examination of the
HAdV-D E3 genomic region. To form an overview of possible
evolutionary relationships between E3 regions within HAdV-D,
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the full E3 regions of 38 viruses (Table 1) were subjected to boot-
strap analysis through the neighbor-joining method, using MEGA
(Molecular Evolutionary Genetics Analysis 4.0.2) (71) (Fig. 1). In
numerous instances, paired viruses formed subclades on the
neighbor-joining tree, for example, HAdV-D types 15 and 53,
types 19a (now type 64 [23]) and 37, types 24 and 46, types 9 and
56, and types 33 and 43. These data add to information from prior
analyses suggesting homologous recombination in the E3 region
between types 19a (type 64) and 37 (23) and between types 9 and
56 (20). The E3 region of HAdV-D53 E3 was previously reported
to be most closely related to that of type 8 (22), but at the time of
that analysis, many fewer E3 regions had been sequenced, and the
full E3 sequence for type 15 had not yet been released. Phyloge-
netic data also suggest that E3 recombination may in some cases
occur for the entire E3 transcription unit, as previously suggested
for HAdV-D63, which evolved as the result of a single recombina-
tion event between types 29 and 30, encompassing about 25% of
their genomes and including the entire E3 and fiber ORFs (24).

To further parse possible recombination between individual
HAdV-D E3 ORFs, proteotype analysis was applied (72). In this

method, amino acid alignments for all viruses under consider-
ation are performed using MEGA with the ClustalW option to
generate maximum likelihood trees for each putative protein. For
visualization in the alignment, the amino acid residues at each
position in the proteins of all 38 viruses are color-coded: each
amino acid is arbitrarily assigned the same unique color for all
occurrences across all the viruses, and then the consensus amino
acid at each position in the alignment is changed to white. Gaps in
the alignment are colored black. A 10% sequence divergence
threshold from consensus is applied to confirm unique proteo-

TABLE 1 GenBank accession numbers for viruses analyzed in this study

Type GenBank accession no.

HAdV-D8 AB448767
HAdV-D9 AJ854486
HAdV-D10 JN226746
HAdV-D13 JN226747
HAdV-D15 JN226748
HAdV-D19p JQ326209
HAdV-D19a EF121005
HAdV-D20 JN226749
HAdV-D22 FJ619037
HAdV-D23 JN226750
HAdV-D24 JN226751
HAdV-D25 JN226752
HAdV-D26 EF153474
HAdV-D27 JN226753
HAdV-D28 FJ824826
HAdV-D29 JN226754
HAdV-D30 JN226755
HAdV-D32 JN226756
HAdV-D33 JN226758
HAdV-D36 GQ384080
HAdV-D37 AB448775
HAdV-D38 JN226759
HAdV-D39 JN226760
HAdV-D42 JN226761
HAdV-D43 JN226762
HAdV-D44 JN226763
HAdV-D45 JN226764
HAdV-D46 AY875648
HAdV-D47 JN226757
HAdV-D48 EF153473
HAdV-D49 DQ393829
HAdV-D51 JN226765
HAdV-D53 FJ169625
HAdV-D54 AB333801
HAdV-D56 HM770721
HAdV-D58 HQ883276
HAdV-D59 JF799911
HAdV-D60 HQ007053

FIG 1 Bootstrap-confirmed (500 replicates) neighbor-joining phylogenetic
tree of whole E3 transcription units from 38 viruses within HAdV-D. Boot-
strap values below 80 are indicative of low confidence.
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FIG 2 Proteotyping analysis for select open reading frames of the E3 transcription unit of HAdV-D: (A) E3 14.7K; (B) CR1�; (C) CR1�. Proteotyping analysis
of CR1� was previously published (6). Maximum likelihood phylogenetic trees are shown to the left for each putative protein, and amino acid signatures are on
the right. The scale bar at the bottom left of each panel denotes the phylogenetic distance reflected in the horizontal dimension of the corresponding tree. To
construct the amino acid signatures shown, each amino acid was assigned a unique color (see the legend in the upper right corner), consensus amino acids at each
position across all 38 viruses were assigned white, and gaps in the alignment are shown in black.
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types (6). Those genes/proteins within a specific proteotype are
assumed to have recombined with one another for that gene or
region, or are all offspring of recombination with another as-yet-
uncharacterized (parent) virus. Proteotype analysis was per-
formed for all eight ORFs in the E3 region within HAdV-D. Only
one proteotype was identified for each of five proteins: 12.5K, 19K,
RID�, RID� (data not shown), and 14.7K (Fig. 2A), consistent
with very high sequence conservation for their respective genes. In
contrast, CR1�, CR1� (6), and CR1� each express multiple
unique proteotypes (6, 14, and 15 proteotypes, respectively) (Fig.
2B and C), suggesting high levels of recombination in those genes.
To better visualize the results of proteotyping, viruses were sorted
using the CR1� proteotype as the reference and then numbered
(and colored) according to proteotype (Fig. 3). Remarkably, 37 of
38 CR1� protein sequences were shared between at least two vi-
ruses, with only one unshared proteotype, that from HAdV-D13.
Therefore, all but 1 of the 38 HAdV-D viruses analyzed appeared
to be recombinant for the CR1� gene. Seventeen of 38 viruses
appeared to be the product (or source) of recombination for the
E3 region as a single unit (�5,000 bp), and 10 viruses (5 pairs)
showed evidence for a single recombination spanning the entire
E3 region and adjacent fiber gene (�6,200 bp) (Fig. 3). Based on

prior analysis (6), the genomic region with the next highest degree
of homologous recombination after CR1� is the penton base RGD
loop, with 10 proteotypes among 38 viruses and only 3 unshared.
In contrast, the hexon protein, which contains the serum neutral-
ization determinant, was shown to have 28 proteotypes among 38
viruses.

When considered together, phylogenetic and proteotype anal-
yses provide strong evidence for E3 recombination among viruses
within HAdV-D. To further explore this, genome sequence re-
combination analysis using SimPlot (http://sray.med.som.jhmi
.edu/SCRoftware/simplot/) (73) was performed for the entire E3
transcription unit along with 800 additional nucleotides on either
end of E3, which included the pVIII and (partial) fiber genes on
the 5= and 3= ends of the E3 region, respectively (representative
examples are shown in Fig. 4). This software compares multiple
reference genomic sequences to a query sequence to allow visual-
ization of possible recombined regions on the basis of high nucle-
otide similarity between two or more sequences. The SimPlot for
HAdV-D23 (Fig. 4A) demonstrated relatively high similarity with
multiple other viruses for CR1� but a unique sequence for CR1�
and -�. These data are consistent with proteotype analysis that
showed the CR1� amino acid sequence of HAdV-D23 was shared
among 12 viruses (Fig. 3). SimPlot analysis for HAdV-D24 dem-
onstrated high similarity with type 46 across all three CR1 ORFs
and the adjacent fiber gene (Fig. 4B), consistent with phylogenetic
and proteotype analyses (Fig. 1 and 3). HAdV-D27 (Fig. 4C) ap-
peared to be recombinant in CR1� (multiple) and possibly CR1�
(with type 28), but not in CR1�. HAdV-D36 (Fig. 4D), which has
been associated with obesity (74), showed evidence for recombi-
nation in CR1� (with multiple viruses) and CR1� (with type 60
and possibly type 19p), but not CR1�. HAdV-D42 (Fig. 4E) dem-
onstrated recombination with type 15 across the entire E3 tran-
scription unit and the adjacent fiber gene and also recombination
with type 53 for the entire E3 region but not the fiber gene. Nota-
bly, types 42, 15, and 53 all appeared closely related by phyloge-
netic analysis (Fig. 1). SimPlot analysis results for HAdV-D44
(Fig. 4F) also were consistent with the phylogenetic and proteo-
type analyses, demonstrating recombination with type 48 for
CR1�, CR1�, and the fiber gene.

These analyses of the E3 transcription unit from 38 fully se-
quenced and annotated viruses within HAdV-D represent power-
ful evidence that evolution of the CR1 ORFs is driven by homol-
ogous recombination, and the results provide new insights into
HAdV-D evolution. The HAdV-D E3 CR1 genes are among the
most highly recombinant in the entire HAdV-D genome. Given
that the E3 transcription unit of HAdV-C is not essential to viral
replication in vitro (29), yet individual components can facilitate
immune evasion by infected cells, these data suggest that evolu-
tion of E3 CR1 genes in HAdV-D may be driven by host factors
that encourage the evolution of unique proteotypes for these
genes. Considering that E3 genes do not encode proteins known to
elicit neutralizing antibodies, the selection pressure imposed on
this region likely occurs at the cellular level. Studies of E3 CR1
functions have focused almost entirely on HAdV-C, in which
CR1� contributes to inhibition of TNF-�-induced apoptosis (57)
and CR1� appears to assist in cell lysis at the final stages of infec-
tion (68). Not as much is known about the function of CR1 gene
products from HAdV-D. It is noteworthy that the CR1� gene of
HAdV-D codes for a much larger protein (49K) than in HAdV-C
(11.6K) (25, 44). Also, CR1�, which is not present in HAdV-C, has

FIG 3 Assortment analysis of putative proteotypes for hexon, E3 CR1, and
fiber open reading frames, organized according to the putative CR1� protein.
Each unique proteotype was assigned a number and color for accounting and
visual representation, respectively. The seven vertical red bars on the left side of
the figure denote those virus groups that demonstrate homologous recombi-
nation across the entire E3 transcription unit. The five blue bars on the right
side of the figure identify those virus groups with evidence for recombination
inclusive of all E3 and adjacent fiber genes. Inclusion of a protein in a given
proteotype required an amino acid content that was �10% different from
other members of the proteotype. The number recombined reflects the total
number of viruses within any proteotype with at least two members.
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FIG 4 SimPlot analysis of the E3 transcription unit, including 800 nucleotides on either side, for 38 viruses within HAdV-D. (A) HAdV-D23; (B) HAdV-D24;
(C) HAdV-D27; (D) HAdV-D36; (E) HAdV-D42; (F) HAdV-D44. A window size of 200 bp and step size of 20 bp were used for the analysis. The color code for
each virus in the analysis is shown on the right margin. Arrows point to examples of homologous recombination.
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no known function (75). A stereotypical flux in GC nucleotide
content was recently proposed as a potential marker for homolo-
gous recombination sites in HAdV-D (6), including the E3 region,
but the exact mechanism for homologous recombination in ad-
enoviruses has yet to be determined.

Finally, recognition of promiscuous recombination among
CR1 genes in HAdV-D E3 should be of interest to those investi-
gators using HAdV-D for development of viral gene vectors (76–
79), particularly when the transgene is placed within the E3 cas-
sette (77, 80–84). HAdV-D-based gene vectors with a transgene
within the E3 region might be susceptible to recombination into
wild-type HAdV-D during a coincidental coinfection, resulting in
an infectious, replication-competent virus with potential expres-
sion of the transgene.
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